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Solutions of a discretized Toda field equation forD,. from
analytic Bethe ansatz

Zengo Tsuboi and Atsuo Kuniba
Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan

Received 13 August 1996

Abstract. Commuting transfer matrices OU,,(Xfl)) vertex models obey the functional
relations which can be viewed as an type Toda field equation on discrete spacetime. Based
on analytic Bethe ansatz we present, ¥r= D,, a new expression of its solution in terms of
determinants and Pfaffians.

1. Introduction

In Kuniba et al (1994), a family of functional relations, &-system, was proposed for
commuting transfer matrices of solvable lattice models associated to any quantum affine
algebrasU, (X"). For X, = D, it reads as follows:

T — DO W+ 1) = T\ ) T," () + TP @) T )

1<agr-3 (1.18)
TV 2w - DT 2w+ =T 2T 2w + T 2T T ) (1.1b)
T - DTOu+ 1) = T Ty (w) + T (u) a=r—1r (1.1c)

where T'@(u) (m € Z,u € C: spectral parameters) denote the transfer matrices with
the auxiliary space labelled by and m. We shall employ the boundary condition
7% ) = 0, T (u) = 1, which is natural for the transfer matrices. Then, solving (1.1)
successively, one can expreg§® (u) uniquely as a polynomial of the fundamental
polynomials 7,”, ..., T\”. The aim of this paper is to give a new expression to the
solution of (1.1) motivated by the analytic Bethe ansatz (Reshetikhin 1983). There is
an earlier solution in Kunibat al (1996), which is expressed only by the fundamental
polynomiaIsT(D, e, Tl("). However, in this paper we begin by introducing the auxiliary
transfer matrix (or ‘dress function’ in the analytic Bethe ansdtu) (2.10) for anya € Z
and establish a new functional relation as in proposition 2.3 (see later). €ar & r — 2,
T%(u) is just T, (u) while for a > r —1 it is quadratic in7,” and7,"~". We then express
the solution as the determinants and Pfaffians with matrix elemenrts 0, iTl(”l) or
+7.”. Moreover those determinants and Pfaffians are taken over the matrices with dense
distributions of non-zero elements as opposed to the sparse ones in Ktigibgl 996).

The two types of representation of the solutions obtained here and in Kenibh
(1996) are significant in their own right. The sparse type (Kurgbal 1996), arises
straightforwardly from a manipulation of th&-system only. On the other hand, the
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dense type is more connected with the analytic Bethe ansatz idea (Kuniba and Suzuki
1995), in view of which it is most natural to introduce t@€ as well as theQ-functions

Q1(u), ..., Q,(u). It should be noted thaf @ (u) in this paper is a solution of (1.1) for
arbitrary Q-functions. The definition through the Bethe equations as in (2.1) to (2.2) is
needed only when one requirgs” («) to yield the actual transfer matrix spectra. We note
that two similar such representations are also available for the solution &, tiiesystem

in Kuniba et al (1995) and Kunibaet al (1996).

As the previous cases (Kunikst al 1995, Kunibaet al 1996), all the proofs of the
determinant and Pfaffian formulae reduce essentially to the Jacobi identity (4.1) (see later),
a well known machinery in soliton theories. In fact, it was first pointed out in (Kuniba
et al 1995) that theT-system forU,(XY) may be viewed as a Toda field equation
(Leznov and Saveliev 1979, Mikhailaat al 1981) with discrete spacetime variablegand
m. Mathematically, it implies a common structure between discretized soliton equations
(Ablowitz and Ladik 1976, Datet al 1982, Hirota 1977) and representation rings of finite-
dimensional modules over Yangians or quantum affine algebras. Our new solution here
exemplifies such an interplay further. See Krichegeal (1996) for a similar perspective.

The outline of the paper is as follows. Section 2 is a brief review of@hease of the
analytic Bethe ansatz results (Kuniba and Suzuki 1995).7E8tu), T, (u) and 7" (u)
it partially overlaps the earlier result in Reshetikhin (1983). Proposition 2.3 is new and
plays a key role in the subsequent arguments. In section 3 we present the solution, which is
proved in section 4. Section 5 is devoted to a discussion. The appendix provides a number
of formulae similar to those used in section 4.

2. Review of the results for fundamental representations

In this section we basically follow (Kuniba and Suzuki 1995). Ket,...,«,} be the
simple roots normalized so thét,|«,) = Cartan matrix. The Bethe ansatz equation reads
T @60 + (@)

—1= @ 1<a<r, 1<k<N, (2.1)
b=1 Op(uy " — (aglap))

Na
Qu() = [ Jlu — uj”] (2.2)
j=1

where [] = (¢" —¢™) /(g —q¢~Y and N, € Zo. In this paper, we suppose thatis
generic. We define a set

J=(L2 .. ..rF.. 1 (2.3)

with the partial order
1<2< o <r—1<-<r—1<--<2<1, (2.9)
r
Note that there is no order betweerandr. Fora € J, set

Z(a;u):Qa—1(u+a+1)Qu(u+a—2) forl<a<r-2
Qualu+a—-1)0.u+a)
Or 2w +nrQr1w+r—-3)0,(u+r—-23)
z(r—1Lu) =
Q,,z(u—i-r—2)Q,,1(u+r—1)Qr(u+r—1)
Orau+r+1)Q,(u+r—3)

Qr—l(u +r— 1)Qr(u +r—-1

Z(r;yu) =
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2Fu) = Oralu+r—30,(u+r+1) 2.5)
Qrfl(u +r— 1)Qr(u +r— 1)
Qr72(u +r— Z)Qrfl(u +r+ 1)Qr(u +r+ 1)
Qr2w+rQ,au+r—-0,w+r—-1)
v Qi au+2r—a—3)0,(u+2r —a) B

Z(a’u)_Qu,l(u+2r—a—l)Qa(u—i—Zr—a—2) forlsasr=2
where Qo(u) = 1. For (&1, ..., &) € {£}', we define the functionp(é, ..., & u)
recursively by

z(r—Lu) =

Sp(+, +, €:3 ..... é:r; M) = IQSP(+, 53 ,,,,, Sr; u)
_ Q1(u+r—23) oo |
W= i tr =1 P i)

_ o Qilu+r+1) 4, )
Sp( 7+7g3 7777 é:rvu)_ Ql(l;{‘l-r—l)r Sp(+7§3 7777 §r7u+2)

sp(=, = &3, . & u) = T0sp(—, &3, ... § u+2) (2.6)
with the following initial conditions:

Q4w —1)
C Q4u+1)
02w Qa(u+3)
T Q2 +2)Qs(u+1)
01w+ 1) Q2(u + 4 Q3(u + 1)
T Q1 +3)Q2(u + 2)Q3(u + 3)
Q1w+ 1)Q3(u+5)
"~ Q1w +3)Q3(u+3)
Q1w +5Q03u+1)
sp(—, +,+, —u) = 014 +3)0a(u + 3 2.7)
_ 01(u+5)Q2(u +2)Q3(u + 5)
T 01(u+3)Q2(u + 4 Q3(u + 3)
_ Q2(u+6)Q4(u+3)
T Q2(u+4)Q4(u+5)
_ Qau+7)
T Q4u+5)’

Herez ¢ is the operationQ, — Q,,1, that is

T2 f(Q1(u +x]), Q1(u +x3), ..., O2(u + x?), Qo(u +x3),...)
= f(Qa(u +x}), Qa(u +x3), ..., O3(u + x?), Q3(u +x3),...) (2.8)

for any function f. We shall use the function®“(u) for a € Z andu € C determined by
the generating series

sp(+, 4+, 4+, +; u)

sp(+, +, —, —u)

sp(+7 ) +a -3 u)

sp(+, —, —, +;u)

sp(—, +, —, +;u)

Sp(—, > +7 +; u)

sp(_a — 7 M)

A4+zLwX)...A+zr —LuwX)[-1+A+zr; w)X)A —zF w)Xz(r u) X)L
+A+zFEwX)A =z w)Xz(F: u)X) ™Y

(1420 —LwX)...1+zLwX) = Y T*u+a—1DX (2.9)

a=—0o0
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whereX is a shift operatorX = €?. Namely, fora < 0 7¢(u) = 0 and fora > 0,

Tu) = Z Z(i1; v1) ... 2 (ks Vo)

i1<--<liy
Ji<ee<ji
k+l+2n=a
Xz (75 Vkr1) 2 (75 Vig2) - - . 2(F; Vgg2n—1)
XZ(r; Vk20)2 (15 Vkg2n41) - - - 2(J15 Va) (2.10)

wherei,, jg € {1,...,r}, k,l,n € Z>o andv, = u +a — 2y + 1. We define the functions
Tl(“) (u) for 1 < a < r that correspond to the dress parts of eigenvalue of transfer matrix in
Kuniba and Suzuki (1995):

W =T'w)  forl<a<r-—2 (2.1%)
=D, _ )
= Y sp. L Esw) (2.11b)
(&1,...,6-)€ Spin”
Vw= > spEn....Ew 2.11)

(£1,....,)€ Spin*

where fore = £ we have put

Spirf:{(El,...,S,):Ejzi,ngjze}. (2.12)
j=1

Theorem 2.1. (Kuniba and Suzuki 1995) For any integer7(u), T\ " (u) and T, (1)
are free of poles under the condition that the BAE is valid.

Actually in Kuniba and Suzuki (1995) only the < r — 2 case was considered f@r (u)

but the proof therein is valid for any. Except for this theorem, all the definitions and the
statements in this paper make sense without assuming (2.1) and (2.2) as mentioned in the
introduction.

Let us now explain the relations betweetia; u) and sp(&1,...,&;u). Define
b < <ipyIh < -+ <L, O<k<<rnadj, < - < j, J1 < - < Jy
(0 <1 < r) using the two sequencés,, ..., &) and(ny, ..., n,) € {£}" as follows:
é—‘il:~-~:$ik:+ ;;-'11:...:%‘1r_k:_
My == == M =-"=nj,,=+ (2.13)

Using the relations (2.5), (2.6) and (2.7) and inductiorrpowe have

Proposition 2.2. For anya € Zo,

a

Hz(b,1;u+a+1—2n)

n=1
=spé1,....6u—r+a+Dspin,....n u+r—a—1 (2.1%)
iy forl<n<k
b r fork <n<a-—1[1andn =k mod 2 2145
") F fork <n <a—1andn %k mod 2 (2.14)

Jatlon fora—Il<n<a
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if k+1<aanda=1[1+kmod 2. For any: € Z<o-_2,

2r—a—2
l_[ zbsu+2r —a—1-—2n)
n=1

=spé&,....E5 u—r+a+DLspni,....,nu+r—a—1) (2.1%)
J forl<n<r-—1I
r forr—l<n<r+k—a—2andn—r+7/=0mod 2

forr—l<n<r+4+k—a—-2andn—r+I7/=1mod?2 (2.1%)

=N

Dy _u_1-n forr+k—a—-2<n<2r—a-2
if k+/>a+2anda =1+ k mod 2.

Fora <r —2, (2.14) is equation (B.1) in Kuniba and Suzuki (1995). The following new
functional relation is theD, version of equation (2.14) in Kunibet al (1995), which is
derived by summing up the equations (214nd (2.1%).

Proposition 2.3.
T+ T 2uw) =T w+r —a— DT " w—r+a+1)
+1 P wtr—a—D1T P w—r +a+1) (2.16)
where
5 — 0 ifi €27
' 1 if i € 2Z + 1.
Note that (2.16) is invariant under the exchamage> 2r — 2 — a; in particular

T Yw) = T )TV ). (2.17)

3. Main results

Set
(r—sz,l) . (r—(S/) .
xj(u) =T, u+2j-2 yiw) =T "(u+2j—2)
1 (u) = Tl(r+’_’_1)(u +i+j—2 aij(u) = x;(u)y; () — t;j(u)
bij(u) = y;i(w)x;(u) — t;;(u). (3.1)
By definition one has
Xi(u+2) = yiy(u) yiu +2) = xiy1(u) tij(u +2) = ti1 j11(u)
aij(u+2) = biy1j41(u) bij(u+2) = aiy1 j41(u). (3.2)

Now we introduce thegm + 1) x (m + 1) matrix S,,11(u) = (Sij)1<i, j<m+1 Whose(, j)
elements are given by

0 fori=j=1
o _ T (u +2j — 4) fori=1land2<j<m+1 33
T w20 — 4y for2<i<m-+landj=1 '

—T Y4 i 4 — b for2<i, j<m+1.
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Using the relation (2.1d) and (2.16), the matrix elements 6&f,.1(u) can be rewritten as

0 fori=j =1
Xj—1 fori=1land2< j<m+1
S = —Xi_1 for 2 < z <m+1 .andj =1 (3.4)
—Xi_1Yi_1 fori=jand2<i<m+1
—ti_1j-1 for2<i<j<m+1
Bi1im1— Xj_1Yi-1— Xi—1Yj-1 for2<j<i<m+1

For Syy1(u) = (Sij)1<i, j<m+1, We introduce the following anti-symmetric matriagg, 1 (1)
andR,,,1(u) :

m—+1
Conp2(u) 1= Spya(w) [ [ P jis —yj-2))
j=2
0 X1 X2 e Xm
—X1 0 a2 e Aig
= | —x2 —az 0 ... aum (3.39)
—X, —dy, —azy ... O

m+1
Ronp1(u) = (]"[ PG, 1; y,-_l(u>>)8m+1<u)
i=2

0 X1 X2 e Xnm
—X1 0 b12 e blm
— —X2 —blz 0 Ce bzm X (353)
—Xm _blm —bgm . 0
Here
P@, j;c) = E+cE; (3.6)

is the m + 1) x (m + 1) matrix with E the identity andE;; the matrix unit. The products
of P’s in the above are commutative. For any mati(u), we shall let

VI ]

e

denote the minor matrix removings rows andj;'s columns fromM (u). Our main results
in this paper are given as follows.

Theorem 3.1. The following determinant and Pfaffian expressions solve e -
system (1.1):

Ty = det [T (u+i+j—m-—1)] forae{l,2,....,r—2}, meZ

1<i,jsm

1
T”(lr)(lxt) _ pf|:cm+l[ 1:|(l/t —m + 1)] for m € 2Z>0

pf[C,,H_l(u —-—m—+ 1)] for m € 2220 +1

(3.79)
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pf|:Cm+2|:i §i|(u —m — 1):| for m € 2Z~¢

Tn(lr*l) (u) = (3.70)

pf|:Cm+2[§](u —m — 1)i| form € 2Z-0+ 1.

4. Proof of theorem 3.1

At first, we present a number of lemmas that are necessary for the proof. The following
Jacobi identity(b # ¢) plays an important role in this section:

detM [b} detM [C] ~ detM [b] detM [C] — detM [” C} detM. 4.1)
b c c b b ¢

Lemma 4.1. (Kunibaet al 1994.) For anyu, m € Z>o andu € C put
T = det [T /(u+i+j—m—D]. (4.2)

1<i,j<m

Then the following functional relation is valid:
T = DT+ 1) = Tl Ty @) + T @) Ty ). (4.3)

Proof. Apply (4.1) for(b,c) = (L, m+ 1D to M = [T (u+i+j—m—2|i<i j<mi1-
(Il

Lemma 4.2. For (37a)—(3.7¢) to satisfy (11b) it is enough to show
TY DT ) = T w). (4.4)

m

Proof. From lemma 4.1 and (2q), we haveT'” (u) = 7,%(u) for L < a < r — 2. Then
compare(1.1») and (4.3) fora = r — 2. |

By noting det[P (i, j; ¢)] = 1, we have

Lemma 4.3.
det[S,+1(w)] = detC,11(u)] = det[R,, 11(w)]. (4.5)
We shall further need

Lemma 4.4. For m € Zso, TV Y(u) (3.7¢) and T, (u) (3.7p) satisfy the following
relations:

det[SmH [m il— 1} (u—m+ 2)} form € 2Z¢

T Y+ DT, ) = (4.62)
det|:8m+2 [i " —21- 2:| (u — m):| forme 2Z-0+1
Ty Y@ () = (=1" det[SmH [ﬂ —m+ 1)] (4.60)

T+ 1)T$1(u) = (=" *t det[S,Hz [ﬂ (u— m)] (4.60)
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T’r(lrjll) (M)T”(,r_l)(u +1) = (=" det[8m+2 |:; m _2+_ 2] (u — m)] (4&:1)
T (= DT W) = (—1)" det[SmH [m i 1] (w—m+ 1)] (4.6e)
T YT+ 1) = (—=1)" det|:Sm+2 [; :2,,} (u—m— 1)] (4.67)

Proof. All the relations in lemma 4.4 reduce to the Jacobi identity. First we prove)4.6
for m € 2Z~o. Let M = R,,+1(u — m 4+ 2) and, noting the relation (4.5), we have

detM = det[R,,.1(u —m +2)] =0 detMm [ﬂ = (T Y+ 1)?

m+1
m+1

1 _ m+1] m+1
sot[ 1] = teurt[ 73] = oo [" V] m 2]

The first identity follows from the fact that the determinant of antisymmetric matrix of odd
size should vanish. The others follow from (B)7 (3.7c) and (3.2). Substituting these
identities into (4.1) for(b, ¢) = (1, m + 1), we have

detM [ } = (T, (u))? 4.7

2
(TP + DT () = <det|:8m+1 [’” j 1] (u —m + 2)}) N CX:)

Taking the square root of (4.8), we have @.6or m € 2Z-9. The relative sign can be
determined so that the equation is valid f@ar= 0 and 2 or more rigorously, by comparing
the sign of the coefficient ofy(u—m+2) ...-x,,(u—m+2)-y1(u—m+2)...y,_1(u—m+2)
on both sides. The other identities can be proved by a similar method. Here wef list
and (b, ¢) to be used in (4.1) and some other relations particularly needed. Equations (3.2)
and (4.5) should also be used.

(4.6a) for m € 2Z + 1:

M=Rm+2|:§:| (u —m) with (b,¢) = (1, m + 1).

(4.6b) for m € 2Z0 + 1:

0 -1 Y1 y2 e Ym
1 0 x1 X2 ... Xnm
—y1 —Xx1 0 a ... daiy
M= -3 —x, —an 0 ... ap |@=—m+D (4.9)
—Ym —Xm —Aim —Qa2n ... 0
with (b, ¢) = (1, 2).
(4.6c):
M =Cui2(u —m) with (b, ¢) = (1, 2).
(4.6d):

M=Cpi2 [g] (u —m) with (b,¢) = (1, m + 1).
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(4.6e):
M=Cupr1(u—m+1) with (b,c) = (1, m + 1).
(4.6D) for m € 2Z:
M=S8,.1u—m+1) with (b,c) = (1, m+ 1)
and the relations (35}, (4.6e) and (4.@).
(4.6f):

M :C,,,JrgI:g] u—m-—1 with (b, ¢) = (1, 2).

We have presented similar relations for (3.and (3.%) in the appendix.

Proof of theorem 3.1. Equation (1.%) follows from lemma 4.1 and (14} from lemma 4.2
and (4.®). Equation (1.&) for a = r is derived as follows. Let

M =Sz H (= m)
then from (4.6), (4.6), (4.&d) and (3.%), we have

detM = (=1)" 170D w + T, (u)

m m+

detM ﬂ ==D"T P U+ DTV (w+ 1)

detM _Z j i = ()" P T - 1)

detM _m i 1_ = ()"T w4+ DT P (u) (4.10)
detn | " 1] = corre

detM i ZH = ()" ', w1, )

Applying (4.1) forb = 1 andc = m + 1 to (4.10), we get (14 for a = r. Equation (1.%)
for a = r — 1 is derived quite similarly. Let

1 2]

then from (4.6), (4.6f), (3.7a) and (4.&), we have

detM = (=" 7 P T (u + 1)

detM ﬂ =D P+ DT (w4 1)
[ PPN T
detM | +1} = (D)"T' Yw - DT ()
i 1 m r r
detM m 1} = D" T+ 1) (4.11)




7794 Z Tsuboi and A Kuniba

detM [m 1“ 1} = (=D"T )

1 m+4+1 _ (_1ym—1p(=1 (r)
Dot e wnw.

Applying (4.1) forb = 1 andc = m + 1 to (4.11), we have (1) fora =r — 1. O

detM [

Remark. Reflecting the Dynkin diagram symmetry of., similar relations to lemma 4.4,
theorem 3.1 and those in the appendix can be obtained by exchahgifgu) and7,” («).

5. Discussion

In this paper, we have given a new representation of the solution tHtHe-system (1.1).
The key is the introduction of the auxiliary dress functidf (2.9) and the new functional
relation (2.16). These are motivated from the analytic Bethe ansatz and lead to a different
expression of the solution from the earlier one (Kundhal 1996).

A similar analysis has been performed in Kun#taal (1995) for theB, case. There, a
more general class of transfer matrix spectra has been represented not only by determinants
but also as summations over certain tableaux. Thes®,a¥angian analogues of the semi-
standard Young tableaux fef(r +1). There remains a problem to extend such an analysis
to the D, case. So far we have only found a conjecture on the tableau sum representations
of T (u) and T, "V (u), as stated below.

Consider an injection : Spirf — J”, sending(¢1, ..., &) t0 (i1, ..., iks jrks - -s j1)
such thatg;, = --- =¢, =+ ¢, = =¢,, = — 1<i1 < - <ip <rand
1< j1 <+ < jr—x <r. We shall write the components ag) = (t(¢)1, ..., t(¢),). For
€ =+ andm € Z; put

Spirf, = {(¢®, ..., ¢™) e (SpirfH)" : 1 D), = L),
forl<i<m-11<a<r}. (5.2)

This is well defined because the situatiop& ),, ((¢*Y),) = (r,7) and (7, r) never
happen due to the parity constraint in (2.12). In particular Spin Spirf. Now our
conjecture reads

Tn(lr+(e71)/2)(u) — Z l—[SP(fm; w—m+2i —1). (5.2)
(¢W,....cm)e Spirf, i=1

We have verified this for & r < 6,1 <m < 2.

Acknowledgments
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Appendix. Other relations

The following relations are valid.
1 2
det|:Cm+2 |: i| (u— m)] form € 279
1) * B 1 m+2
Ty P+ DTV —1) = ) (A1)
det[8m+2[m+2} (u—m)] forme 2Z-0+1
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det I:Sm+2 [ 1

2 m-2|—2](u_m):|

7795

for m € 279

TV T (e + 1) = . (A.2)
det[8m+1 [’” ir } w—m+ 2)] form € 2Z-o + 1
T, T+ 1) = det|:3m+2 [ﬂ (u — m)] (A-3)
T(rfém-l) (r—8m-1) _ 2 3
i VT V@A D) = det| Spia| § | —m—2)] (A.4)
1 2 m+3
det|:Cm+3 |:1 5 3 i| u—m— 2):|
for m € 27
LYW - DI+ 1) = " T (A5)
m
det|:8m+3 [2 3 i| u—m— 2):|
forme 2Z-0+1
det| S5 g "l 3] (—m— 2)} for m e 274
TP T ) = . 3 (A.6)
det|Cusa| | & ’"; ](u—m—Z)j| for m € 2Z-9 + 1

det
TV P T () = =
det

Cm+2 1 2

Proof.

should also be used when necessary.
(A.1) form € 2Z :

M :cm+z[ﬂ(u—m)
forme2Z-0+1:

M= Sm+2(u - m)
(A.2) form € 2Z :

M =Rm+z[ﬂ (u —m)

forme2Z-o+1:
M =Ryp1(u —m+2)
(A.3) :
M = Spi2(u —m)
and the relations (44§ and (4.6).

Sm+2 " —zi_ 21| (M - m):|

1 m+2:|(u_m)i|

form € 2Z>0

(A7)

form € 2Z-0+ 1.

The proof is performed in the same way as lemma 4.4. Here wéistnd (b, ¢)
to be used in (4.1) and some other relations particularly needed. Equations (4.5) and (3.2)

with (b,c) =1, m+ 1)

with (b, ¢) = (2, m + 2).

with (b,c) =1, m+ 1)

with (b, ¢) = (L, m + 1).

with (b, ¢) = (1, 2)
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(A4) :
M= Spra [ﬂ w—m—2  with (b,c) = (L 2)
and the relations (44§ and (4.6f).
(A.5) form € 2Z :

[1 2

M= Cm+3 1 2

:|(u—m—2) with (b,c) =1, m+ 1)

=

form € 2Z>0 +
M =Cpai3 g] (u —m — 2)with (b,¢c) = (2, m + 2).
(A.6) form € 2Z :

M =Cpy3 g](u—m—Z) with (b,¢) = (2,m + 2)

[

form € 2Z-0 +

M =Ci3 i §j| u—m-—2) with (b,¢) = (A, m + 1).

(A.7) form € 2Z :
M =S,12(u —m) with (b,c) = (2, m + 2)
forme 2Z-o+1:

M =Cpi2 [i] (u —m) with (b,¢) = (1, m + 1).
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