
Solutions of a discretized Toda field equation for  from analytic Bethe ansatz

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 7785

(http://iopscience.iop.org/0305-4470/29/23/034)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 7785–7796. Printed in the UK

Solutions of a discretized Toda field equation forDr from
analytic Bethe ansatz

Zengo Tsuboi and Atsuo Kuniba†
Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan

Received 13 August 1996

Abstract. Commuting transfer matrices ofUq(X
(1)
r ) vertex models obey the functional

relations which can be viewed as anXr type Toda field equation on discrete spacetime. Based
on analytic Bethe ansatz we present, forXr = Dr , a new expression of its solution in terms of
determinants and Pfaffians.

1. Introduction

In Kuniba et al (1994), a family of functional relations, aT -system, was proposed for
commuting transfer matrices of solvable lattice models associated to any quantum affine
algebrasUq(X

(1)
r ). For Xr = Dr it reads as follows:

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)

m+1(u)T
(a)

m−1(u) + T (a−1)
m (u)T (a+1)

m (u)

1 6 a 6 r − 3 (1.1a)

T (r−2)
m (u − 1)T (r−2)

m (u + 1) = T
(r−2)

m+1 (u)T
(r−2)

m−1 (u) + T (r−3)
m (u)T (r−1)

m (u)T (r)
m (u) (1.1b)

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)

m+1(u)T
(a)

m−1(u) + T (r−2)
m (u) a = r − 1, r (1.1c)

where T (a)
m (u) (m ∈ Z, u ∈ C: spectral parameters) denote the transfer matrices with

the auxiliary space labelled bya and m. We shall employ the boundary condition
T

(a)

−1 (u) = 0, T
(a)

0 (u) = 1, which is natural for the transfer matrices. Then, solving (1.1)
successively, one can expressT (a)

m (u) uniquely as a polynomial of the fundamental
polynomials T

(1)

1 , . . . , T
(r)

1 . The aim of this paper is to give a new expression to the
solution of (1.1) motivated by the analytic Bethe ansatz (Reshetikhin 1983). There is
an earlier solution in Kunibaet al (1996), which is expressed only by the fundamental
polynomialsT

(1)

1 , . . . , T
(r)

1 . However, in this paper we begin by introducing the auxiliary
transfer matrix (or ‘dress function’ in the analytic Bethe ansatz)T a(u) (2.10) for anya ∈ Z
and establish a new functional relation as in proposition 2.3 (see later). For 16 a 6 r − 2,
T a(u) is justT (a)

1 (u) while for a > r −1 it is quadratic inT (r)

1 andT
(r−1)

1 . We then express
the solution as the determinants and Pfaffians with matrix elements 0, ±T a, ±T

(r−1)

1 or
±T

(r)

1 . Moreover those determinants and Pfaffians are taken over the matrices with dense
distributions of non-zero elements as opposed to the sparse ones in Kunibaet al (1996).

The two types of representation of the solutions obtained here and in Kunibaet al
(1996) are significant in their own right. The sparse type (Kunibaet al 1996), arises
straightforwardly from a manipulation of theT -system only. On the other hand, the
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dense type is more connected with the analytic Bethe ansatz idea (Kuniba and Suzuki
1995), in view of which it is most natural to introduce theT a as well as theQ-functions
Q1(u), . . . , Qr(u). It should be noted thatT (a)

m (u) in this paper is a solution of (1.1) for
arbitrary Q-functions. The definition through the Bethe equations as in (2.1) to (2.2) is
needed only when one requiresT (a)

m (u) to yield the actual transfer matrix spectra. We note
that two similar such representations are also available for the solution of theBr T -system
in Kuniba et al (1995) and Kunibaet al (1996).

As the previous cases (Kunibaet al 1995, Kunibaet al 1996), all the proofs of the
determinant and Pfaffian formulae reduce essentially to the Jacobi identity (4.1) (see later),
a well known machinery in soliton theories. In fact, it was first pointed out in (Kuniba
et al 1995) that theT -system forUq(X

(1)
r ) may be viewed as a Toda field equation

(Leznov and Saveliev 1979, Mikhailovet al 1981) with discrete spacetime variablesu and
m. Mathematically, it implies a common structure between discretized soliton equations
(Ablowitz and Ladik 1976, Dateet al 1982, Hirota 1977) and representation rings of finite-
dimensional modules over Yangians or quantum affine algebras. Our new solution here
exemplifies such an interplay further. See Kricheveret al (1996) for a similar perspective.

The outline of the paper is as follows. Section 2 is a brief review of theDr case of the
analytic Bethe ansatz results (Kuniba and Suzuki 1995). ForT

(1)

1 (u), T
(r)

1 (u) andT
(r−1)

1 (u)

it partially overlaps the earlier result in Reshetikhin (1983). Proposition 2.3 is new and
plays a key role in the subsequent arguments. In section 3 we present the solution, which is
proved in section 4. Section 5 is devoted to a discussion. The appendix provides a number
of formulae similar to those used in section 4.

2. Review of the results for fundamental representations

In this section we basically follow (Kuniba and Suzuki 1995). Let{α1, . . . , αr} be the
simple roots normalized so that(αa|αb) = Cartan matrix. The Bethe ansatz equation reads

−1 =
r∏

b=1

Qb(u
(a)
k + (αa|αb))

Qb(u
(a)
k − (αa|αb))

1 6 a 6 r, 1 6 k 6 Na (2.1)

Qa(u) =
Na∏

j=1

[u − u
(a)
j ] (2.2)

where [u] = (qu − q−u)/(q − q−1) and Na ∈ Z>0. In this paper, we suppose thatq is
generic. We define a set

J = {1, 2, . . . , r, r̄, . . . , 1̄} (2.3)

with the partial order

1 ≺ 2 ≺ · · · ≺ r − 1 ≺ r

r̄
≺ r − 1 ≺ · · · ≺ 2̄ ≺ 1̄. (2.4)

Note that there is no order betweenr and r̄. For a ∈ J , set

z(a; u) = Qa−1(u + a + 1)Qa(u + a − 2)

Qa−1(u + a − 1)Qa(u + a)
for 1 6 a 6 r − 2

z(r − 1; u) = Qr−2(u + r)Qr−1(u + r − 3)Qr(u + r − 3)

Qr−2(u + r − 2)Qr−1(u + r − 1)Qr(u + r − 1)

z(r; u) = Qr−1(u + r + 1)Qr(u + r − 3)

Qr−1(u + r − 1)Qr(u + r − 1)



Solutions of a discretized Toda field equation 7787

z(r̄; u) = Qr−1(u + r − 3)Qr(u + r + 1)

Qr−1(u + r − 1)Qr(u + r − 1)
(2.5)

z(r − 1; u) = Qr−2(u + r − 2)Qr−1(u + r + 1)Qr(u + r + 1)

Qr−2(u + r)Qr−1(u + r − 1)Qr(u + r − 1)

z(ā; u) = Qa−1(u + 2r − a − 3)Qa(u + 2r − a)

Qa−1(u + 2r − a − 1)Qa(u + 2r − a − 2)
for 1 6 a 6 r − 2

where Q0(u) = 1. For (ξ1, . . . , ξr ) ∈ {±}r , we define the functionsp(ξ1, . . . , ξr; u)

recursively by

sp(+, +, ξ3, . . . , ξr; u) = τQsp(+, ξ3, . . . , ξr; u)

sp(+, −, ξ3, . . . , ξr; u) = Q1(u + r − 3)

Q1(u + r − 1)
τQsp(−, ξ3, . . . , ξr; u)

sp(−, +, ξ3, . . . , ξr; u) = Q1(u + r + 1)

Q1(u + r − 1)
τQsp(+, ξ3, . . . , ξr; u + 2)

sp(−, −, ξ3, . . . , ξr; u) = τQsp(−, ξ3, . . . , ξr; u + 2) (2.6)

with the following initial conditions:

sp(+, +, +, +; u) = Q4(u − 1)

Q4(u + 1)

sp(+, +, −, −; u) = Q2(u)Q4(u + 3)

Q2(u + 2)Q4(u + 1)

sp(+, −, +, −; u) = Q1(u + 1)Q2(u + 4)Q3(u + 1)

Q1(u + 3)Q2(u + 2)Q3(u + 3)

sp(+, −, −, +; u) = Q1(u + 1)Q3(u + 5)

Q1(u + 3)Q3(u + 3)

sp(−, +, +, −; u) = Q1(u + 5)Q3(u + 1)

Q1(u + 3)Q3(u + 3)
(2.7)

sp(−, +, −, +; u) = Q1(u + 5)Q2(u + 2)Q3(u + 5)

Q1(u + 3)Q2(u + 4)Q3(u + 3)

sp(−, −, +, +; u) = Q2(u + 6)Q4(u + 3)

Q2(u + 4)Q4(u + 5)

sp(−, −, −, −; u) = Q4(u + 7)

Q4(u + 5)
.

HereτQ is the operationQa 7→ Qa+1, that is

τQf (Q1(u + x1
1), Q1(u + x1

2), . . . , Q2(u + x2
1), Q2(u + x2

2), . . .)

= f (Q2(u + x1
1), Q2(u + x1

2), . . . , Q3(u + x2
1), Q3(u + x2

2), . . .) (2.8)

for any functionf . We shall use the functionsT a(u) for a ∈ Z andu ∈ C determined by
the generating series

(1 + z(1̄; u)X) . . . (1 + z(r − 1; u)X)[−1 + (1 + z(r; u)X)(1 − z(r̄; u)Xz(r; u)X)−1

+(1 + z(r̄; u)X)(1 − z(r; u)Xz(r̄; u)X)−1]

×(1 + z(r − 1; u)X) . . . (1 + z(1; u)X) =
∞∑

a=−∞
T a(u + a − 1)Xa (2.9)
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whereX is a shift operatorX = e2∂u . Namely, fora < 0 T a(u) = 0 and fora > 0,

T a(u) =
∑

i1<···<ik
j1<···<jl

k+l+2n=a

z(i1; v1) . . . z(ik; vk)

×z(r̄; vk+1)z(r; vk+2) . . . z(r̄; vk+2n−1)

×z(r; vk+2n)z(jl; vk+2n+1) . . . z(j1; va) (2.10)

whereiα, jβ ∈ {1, . . . , r}, k, l, n ∈ Z>0 andvγ = u + a − 2γ + 1. We define the functions
T

(a)

1 (u) for 1 6 a 6 r that correspond to the dress parts of eigenvalue of transfer matrix in
Kuniba and Suzuki (1995):

T
(a)

1 (u) = T a(u) for 1 6 a 6 r − 2 (2.11a)

T
(r−1)

1 (u) =
∑

(ξ1,...,ξr )∈ Spin−
sp(ξ1, . . . , ξr; u) (2.11b)

T
(r)

1 (u) =
∑

(ξ1,...,ξr )∈ Spin+
sp(ξ1, . . . , ξr; u) (2.11c)

where forε = ± we have put

Spinε =
{
(ξ1, . . . , ξr ) : ξj = ±,

r∏
j=1

ξj = ε

}
. (2.12)

Theorem 2.1. (Kuniba and Suzuki 1995) For any integera, T a(u), T
(r−1)

1 (u) andT
(r)

1 (u)

are free of poles under the condition that the BAE is valid.

Actually in Kuniba and Suzuki (1995) only thea 6 r − 2 case was considered forT a(u)

but the proof therein is valid for anya. Except for this theorem, all the definitions and the
statements in this paper make sense without assuming (2.1) and (2.2) as mentioned in the
introduction.

Let us now explain the relations betweenz(a; u) and sp(ξ1, . . . , ξr; u). Define
i1 < · · · < ik, I1 < · · · < Ir−k (0 6 k 6 r) and j1 < · · · < jl , J1 < · · · < Jr−l

(0 6 l 6 r) using the two sequences(ξ1, . . . , ξr ) and(η1, . . . , ηr) ∈ {±}r as follows:

ξi1 = · · · = ξik = + ξI1 = · · · = ξIr−k
= −

ηj1 = · · · = ηjl
= − ηJ1 = · · · = ηJr−l

= +. (2.13)

Using the relations (2.5), (2.6) and (2.7) and induction onr, we have

Proposition 2.2. For anya ∈ Z>0,

a∏
n=1

z(bn; u + a + 1 − 2n)

= sp(ξ1, . . . , ξr; u − r + a + 1)sp(η1, . . . , ηr; u + r − a − 1) (2.14a)

bn =


in for 1 6 n 6 k

r for k < n 6 a − l andn ≡ k mod 2

r̄ for k < n 6 a − l andn 6≡ k mod 2

ja+1−n for a − l < n 6 a

(2.14b)
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if k + l 6 a anda ≡ l + k mod 2. For anya ∈ Z62r−2,

2r−a−2∏
n=1

z(b′
n; u + 2r − a − 1 − 2n)

= sp(ξ1, . . . , ξr; u − r + a + 1)sp(η1, . . . , ηr; u + r − a − 1) (2.15a)

b′
n =


Jn for 1 6 n 6 r − l

r for r − l < n 6 r + k − a − 2 andn − r + l ≡ 0 mod 2

r̄ for r − l < n 6 r + k − a − 2 andn − r + l ≡ 1 mod 2

I2r−a−1−n for r + k − a − 2 < n 6 2r − a − 2

(2.15b)

if k + l > a + 2 anda ≡ l + k mod 2.

For a 6 r − 2, (2.14a) is equation (B.1) in Kuniba and Suzuki (1995). The following new
functional relation is theDr version of equation (2.14) in Kunibaet al (1995), which is
derived by summing up the equations (2.14a) and (2.15a).

Proposition 2.3.

T a(u) + T 2r−a−2(u) = T
(r)

1 (u + r − a − 1)T
(r−δr−a)

1 (u − r + a + 1)

+T
(r−1)

1 (u + r − a − 1)T
(r−δr−a−1)

1 (u − r + a + 1) (2.16)

where

δi =
{

0 if i ∈ 2Z
1 if i ∈ 2Z + 1.

Note that (2.16) is invariant under the exchangea ↔ 2r − 2 − a; in particular

T r−1(u) = T
(r)

1 (u)T
(r−1)

1 (u). (2.17)

3. Main results

Set

xj (u) = T
(r−δj−1)

1 (u + 2j − 2) yj (u) = T
(r−δj )

1 (u + 2j − 2)

tij (u) = T
(r+i−j−1)

1 (u + i + j − 2) aij (u) = xi(u)yj (u) − tij (u)

bij (u) = yi(u)xj (u) − tij (u). (3.1)

By definition one has

xi(u + 2) = yi+1(u) yi(u + 2) = xi+1(u) tij (u + 2) = ti+1 j+1(u)

aij (u + 2) = bi+1 j+1(u) bij (u + 2) = ai+1 j+1(u). (3.2)

Now we introduce the(m + 1) × (m + 1) matrix Sm+1(u) = (Sij )16i,j6m+1 whose(i, j)

elements are given by

Sij =


0 for i = j = 1

T
(r−δj )

1 (u + 2j − 4) for i = 1 and 26 j 6 m + 1

−T
(r−δi )

1 (u + 2i − 4) for 2 6 i 6 m + 1 andj = 1

−T r+i−j−1(u + i + j − 4) for 2 6 i, j 6 m + 1.

(3.3)
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Using the relation (2.11a) and (2.16), the matrix elements ofSm+1(u) can be rewritten as

Sij =



0 for i = j = 1

xj−1 for i = 1 and 26 j 6 m + 1

−xi−1 for 2 6 i 6 m + 1 andj = 1

−xi−1yi−1 for i = j and 26 i 6 m + 1

−ti−1j−1 for 2 6 i < j 6 m + 1

tj−1 i−1 − xj−1yi−1 − xi−1yj−1 for 2 6 j < i 6 m + 1.

(3.4)

For Sm+1(u) = (Sij )16i,j6m+1, we introduce the following anti-symmetric matricesCm+1(u)

andRm+1(u) :

Cm+1(u) := Sm+1(u)

m+1∏
j=2

P(1, j ; −yj−1(u))

=


0 x1 x2 . . . xm

−x1 0 a12 . . . a1m

−x2 −a12 0 . . . a2m

...
...

...
. . .

...

−xm −a1m −a2m . . . 0

 (3.5a)

Rm+1(u) :=
(m+1∏

i=2

P(i, 1; yi−1(u))

)
Sm+1(u)

=


0 x1 x2 . . . xm

−x1 0 b12 . . . b1m

−x2 −b12 0 . . . b2m

...
...

...
. . .

...

−xm −b1m −b2m . . . 0

 . (3.5b)

Here

P(i, j ; c) = E + cEij (3.6)

is the(m + 1) × (m + 1) matrix with E the identity andEij the matrix unit. The products
of P’s in the above are commutative. For any matrixM(u), we shall let

M
[

i1 . . . ik
j1 . . . jk

]
(u)

denote the minor matrix removingil ’s rows andjl ’s columns fromM(u). Our main results
in this paper are given as follows.

Theorem 3.1. The following determinant and Pfaffian expressions solve theDrT -
system (1.1):

T (a)
m (u) = det

16i,j6m
[T a+i−j (u + i + j − m − 1)] for a ∈ {1, 2, . . . , r − 2}, m ∈ Z>0

T (r)
m (u) =

 pf

[
Cm+1

[
1
1

]
(u − m + 1)

]
for m ∈ 2Z>0

pf[Cm+1(u − m + 1)] for m ∈ 2Z>0 + 1
(3.7a)
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T (r−1)
m (u) =


pf

[
Cm+2

[
1 2
1 2

]
(u − m − 1)

]
for m ∈ 2Z>0

pf

[
Cm+2

[
2
2

]
(u − m − 1)

]
for m ∈ 2Z>0 + 1.

(3.7b)

4. Proof of theorem 3.1

At first, we present a number of lemmas that are necessary for the proof. The following
Jacobi identity(b 6= c) plays an important role in this section:

detM
[

b

b

]
detM

[
c

c

]
− detM

[
b

c

]
detM

[
c

b

]
= detM

[
b c

b c

]
detM. (4.1)

Lemma 4.1. (Kuniba et al 1994.) For anya, m ∈ Z>0 andu ∈ C put

T a
m (u) = det

16i,j6m
[T a+i−j (u + i + j − m − 1)]. (4.2)

Then the following functional relation is valid:

T a
m (u − 1)T a

m (u + 1) = T a
m+1(u)T a

m−1(u) + T a−1
m (u)T a+1

m (u). (4.3)

Proof. Apply (4.1) for (b, c) = (1, m + 1) to M = [T a+i−j (u + i + j − m − 2)]16i,j6m+1.
�

Lemma 4.2. For (3.7a)–(3.7c) to satisfy (1.1b) it is enough to show

T (r−1)
m (u)T (r)

m (u) = T r−1
m (u). (4.4)

Proof. From lemma 4.1 and (3.7a), we haveT (a)
m (u) = T a

m (u) for 1 6 a 6 r − 2. Then
compare(1.1b) and (4.3) fora = r − 2. �

By noting det[P(i, j ; c)] = 1, we have

Lemma 4.3.

det[Sm+1(u)] = det[Cm+1(u)] = det[Rm+1(u)]. (4.5)

We shall further need

Lemma 4.4. For m ∈ Z>0, T (r−1)
m (u) (3.7c) and T (r)

m (u) (3.7b) satisfy the following
relations:

T (r−1)
m (u + 1)T

(r)

m−1(u) =


det

[
Sm+1

[
m + 1

1

]
(u − m + 2)

]
for m ∈ 2Z>0

det

[
Sm+2

[
2 m + 2
1 2

]
(u − m)

]
for m ∈ 2Z>0 + 1

(4.6a)

T (r−1)
m (u)T (r)

m (u) = (−1)m det

[
Sm+1

[
1
1

]
(u − m + 1)

]
(4.6b)

T (r−1)
m (u + 1)T

(r)

m+1(u) = (−1)m+1 det

[
Sm+2

[
1
2

]
(u − m)

]
(4.6c)
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T
(r−1)

m−1 (u)T (r−1)
m (u + 1) = (−1)m det

[
Sm+2

[
1 2
2 m + 2

]
(u − m)

]
(4.6d)

T
(r)

m−1(u − 1)T (r)
m (u) = (−1)m det

[
Sm+1

[
1

m + 1

]
(u − m + 1)

]
(4.6e)

T (r−1)
m (u)T

(r)

m−1(u + 1) = (−1)m det

[
Sm+2

[
1 2
2 3

]
(u − m − 1)

]
. (4.6f)

Proof. All the relations in lemma 4.4 reduce to the Jacobi identity. First we prove (4.6a)
for m ∈ 2Z>0. Let M = Rm+1(u − m + 2) and, noting the relation (4.5), we have

detM = det[Rm+1(u − m + 2)] = 0 detM
[

1
1

]
= (T (r−1)

m (u + 1))2

detM
[

m + 1
m + 1

]
= (T

(r)

m−1(u))2 (4.7)

detM
[

1
m + 1

]
= detM

[
m + 1

1

]
= det

[
Sm+1

[
m + 1

1

]
(u − m + 2)

]
.

The first identity follows from the fact that the determinant of antisymmetric matrix of odd
size should vanish. The others follow from (3.7b), (3.7c) and (3.2). Substituting these
identities into (4.1) for(b, c) = (1, m + 1), we have

(T (r−1)
m (u + 1)T

(r)

m−1(u))2 =
(

det

[
Sm+1

[
m + 1

1

]
(u − m + 2)

])2

. (4.8)

Taking the square root of (4.8), we have (4.6a) for m ∈ 2Z>0. The relative sign can be
determined so that the equation is valid form = 0 and 2 or more rigorously, by comparing
the sign of the coefficient ofx1(u−m+2) . . .·xm(u−m+2)·y1(u−m+2) . . . ym−1(u−m+2)

on both sides. The other identities can be proved by a similar method. Here we listM
and(b, c) to be used in (4.1) and some other relations particularly needed. Equations (3.2)
and (4.5) should also be used.

(4.6a) for m ∈ 2Z>0 + 1:

M = Rm+2

[
2
2

]
(u − m) with (b, c) = (1, m + 1).

(4.6b) for m ∈ 2Z>0 + 1:

M =



0 −1 y1 y2 . . . ym

1 0 x1 x2 . . . xm

−y1 −x1 0 a12 . . . a1m

−y2 −x2 −a12 0 . . . a2m

...
...

...
...

. . .
...

−ym −xm −a1m −a2m . . . 0

 (u − m + 1) (4.9)

with (b, c) = (1, 2).
(4.6c):

M = Cm+2(u − m) with (b, c) = (1, 2).

(4.6d):

M = Cm+2

[
2
2

]
(u − m) with (b, c) = (1, m + 1).
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(4.6e):

M = Cm+1(u − m + 1) with (b, c) = (1, m + 1).

(4.6b) for m ∈ 2Z>0:

M = Sm+1(u − m + 1) with (b, c) = (1, m + 1)

and the relations (3.7b), (4.6e) and (4.6a).
(4.6f ):

M = Cm+2

[
2
2

]
(u − m − 1) with (b, c) = (1, 2).

�

We have presented similar relations for (3.7c) and (3.7b) in the appendix.

Proof of theorem 3.1. Equation (1.1a) follows from lemma 4.1 and (1.1b) from lemma 4.2
and (4.6b). Equation (1.1c) for a = r is derived as follows. Let

M = Sm+2

[
1
2

]
(u − m)

then from (4.6c), (4.6b), (4.6d) and (3.7a), we have

detM = (−1)m+1T (r−1)
m (u + 1)T

(r)

m+1(u)

detM
[

1
1

]
= (−1)mT (r−1)

m (u + 1)T (r)
m (u + 1)

detM
[

m + 1
m + 1

]
= (−1)mT

(r−1)

m−1 (u)T (r)
m (u − 1)

detM
[

1
m + 1

]
= (−1)mT (r−1)

m (u + 1)T
(r−1)

m−1 (u) (4.10)

detM
[

m + 1
1

]
= (−1)mT (r−2)

m (u)

detM
[

1 m + 1
1 m + 1

]
= (−1)m−1T

(r−1)

m−1 (u)T
(r)

m−1(u)

Applying (4.1) forb = 1 andc = m+ 1 to (4.10), we get (1.1c) for a = r. Equation (1.1c)
for a = r − 1 is derived quite similarly. Let

M = Sm+3

[
1 2
2 3

]
(u − m − 2)

then from (4.6b), (4.6f ), (3.7a) and (4.6e), we have

detM = (−1)m+1T
(r−1)

m+1 (u)T (r)
m (u + 1)

detM
[

1
1

]
= (−1)mT (r−1)

m (u + 1)T (r)
m (u + 1)

detM
[

m + 1
m + 1

]
= (−1)mT (r−1)

m (u − 1)T
(r)

m−1(u)

detM
[

1
m + 1

]
= (−1)mT

(r)

m−1(u)T (r)
m (u + 1) (4.11)
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detM
[

m + 1
1

]
= (−1)mT (r−2)

m (u)

detM
[

1 m + 1
1 m + 1

]
= (−1)m−1T

(r−1)

m−1 (u)T
(r)

m−1(u).

Applying (4.1) forb = 1 andc = m + 1 to (4.11), we have (1.1c) for a = r − 1. �

Remark. Reflecting the Dynkin diagram symmetry ofDr , similar relations to lemma 4.4,
theorem 3.1 and those in the appendix can be obtained by exchangingT

(r−1)

1 (u) andT
(r)

1 (u).

5. Discussion

In this paper, we have given a new representation of the solution to theDr T -system (1.1).
The key is the introduction of the auxiliary dress functionT a (2.9) and the new functional
relation (2.16). These are motivated from the analytic Bethe ansatz and lead to a different
expression of the solution from the earlier one (Kunibaet al 1996).

A similar analysis has been performed in Kunibaet al (1995) for theBr case. There, a
more general class of transfer matrix spectra has been represented not only by determinants
but also as summations over certain tableaux. These areBr Yangian analogues of the semi-
standard Young tableaux forsl(r + 1). There remains a problem to extend such an analysis
to theDr case. So far we have only found a conjecture on the tableau sum representations
of T (r)

m (u) andT (r−1)
m (u), as stated below.

Consider an injectionι : Spinε → J r , sending(ζ1, . . . , ζr ) to (i1, . . . , ik, jr−k, . . . , j1)

such thatζi1 = · · · = ζik = +, ζj1 = · · · = ζjr−k
= −, 1 6 i1 < · · · < ik 6 r and

1 6 j1 < · · · < jr−k 6 r. We shall write the components asι(ζ ) = (ι(ζ )1, . . . , ι(ζ )r ). For
ε = ± andm ∈ Z>1 put

Spinε
m = {(ζ (1), . . . , ζ (m)) ∈ (Spinε)m : ι(ζ (i))a � ι(ζ (i+1))a

for 1 6 i 6 m − 1, 1 6 a 6 r}. (5.1)

This is well defined because the situations(ι(ζ (i))a, ι(ζ
(i+1))a) = (r, r) and (r, r) never

happen due to the parity constraint in (2.12). In particular Spinε
1 = Spinε . Now our

conjecture reads

T (r+(ε−1)/2)
m (u) =

∑
(ζ (1),...,ζ (m))∈ Spinε

m

m∏
i=1

sp(ζ (i); u − m + 2i − 1). (5.2)

We have verified this for 46 r 6 6, 1 6 m 6 2.
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Appendix. Other relations

The following relations are valid.

T (r−1)
m (u + 1)T (r)

m (u − 1) =


det

[
Cm+2

[
1 2
1 m + 2

]
(u − m)

]
for m ∈ 2Z>0

det

[
Sm+2

[
2

m + 2

]
(u − m)

]
for m ∈ 2Z>0 + 1

(A.1)
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T
(r−1)

m−1 (u)T (r)
m (u + 1) =


det

[
Sm+2

[
2 m + 2
1 2

]
(u − m)

]
for m ∈ 2Z>0

det

[
Sm+1

[
m + 1

1

]
(u − m + 2)

]
for m ∈ 2Z>0 + 1

(A.2)

T
(r−δm)

m+1 (u)T (r−δm)
m (u + 1) = det

[
Sm+2

[
2
1

]
(u − m)

]
(A.3)

T
(r−δm−1)

m+1 (u)T (r−δm−1)
m (u + 1) = det

[
Sm+3

[
2 3
1 2

]
(u − m − 2)] (A.4)

T (r−1)
m (u − 1)T (r)

m (u + 1) =



det

[
Cm+3

[
1 2 m + 3
1 2 3

]
(u − m − 2)

]
for m ∈ 2Z>0

det

[
Sm+3

[
2 m + 3
2 3

]
(u − m − 2)

]
for m ∈ 2Z>0 + 1

(A.5)

T
(r−1)

m+1 (u)T
(r)

m−1(u) =


det

[
Sm+3

[
2 m + 3
2 3

]
(u − m − 2)

]
for m ∈ 2Z>0

det

[
Cm+3

[
1 2 m + 3
1 2 3

]
(u − m − 2)

]
for m ∈ 2Z>0 + 1

(A.6)

T
(r−1)

m−1 (u)T
(r)

m+1(u) =


det

[
Sm+2

[
m + 2

2

]
(u − m)

]
for m ∈ 2Z>0

det

[
Cm+2

[
1 m + 2
1 2

]
(u − m)

]
for m ∈ 2Z>0 + 1.

(A.7)

Proof. The proof is performed in the same way as lemma 4.4. Here we listM and(b, c)

to be used in (4.1) and some other relations particularly needed. Equations (4.5) and (3.2)
should also be used when necessary.

(A.1) for m ∈ 2Z>0 :

M = Cm+2

[
1
1

]
(u − m) with (b, c) = (1, m + 1)

for m ∈ 2Z>0 + 1 :

M = Sm+2(u − m) with (b, c) = (2, m + 2).

(A.2) for m ∈ 2Z>0 :

M = Rm+2

[
2
2

]
(u − m) with (b, c) = (1, m + 1)

for m ∈ 2Z>0 + 1 :

M = Rm+1(u − m + 2) with (b, c) = (1, m + 1).

(A.3) :

M = Sm+2(u − m) with (b, c) = (1, 2)

and the relations (4.6b) and (4.6c).
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(A.4) :

M = Sm+3

[
2
2

]
(u − m − 2) with (b, c) = (1, 2)

and the relations (4.6b) and (4.6f ).
(A.5) for m ∈ 2Z>0 :

M = Cm+3

[
1 2
1 2

]
(u − m − 2) with (b, c) = (1, m + 1)

for m ∈ 2Z>0 + 1 :

M = Cm+3

[
2
2

]
(u − m − 2)with (b, c) = (2, m + 2).

(A.6) for m ∈ 2Z>0 :

M = Cm+3

[
2
2

]
(u − m − 2) with (b, c) = (2, m + 2)

for m ∈ 2Z>0 + 1 :

M = Cm+3

[
1 2
1 2

]
(u − m − 2) with (b, c) = (1, m + 1).

(A.7) for m ∈ 2Z>0 :

M = Sm+2(u − m) with (b, c) = (2, m + 2)

for m ∈ 2Z>0 + 1 :

M = Cm+2

[
1
1

]
(u − m) with (b, c) = (1, m + 1).

�
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